Это как математика, только лучше
Необходимость всегда выстраивать причинно-следственные связи может напугать писателя. Как сохранить целостность? Как убедиться, что вы не сбили читателя с толку? Как говорит гарвардский профессор Дэниел Гилберт: «У всего есть причина и следствие»{125}, – так давайте попробуем преобразовать это в старое доброе и очень простенькое математическое уравнение.
Но для начала еще раз вспомним все, что мы уже знаем о законе причинно-следственных связей и о том, для чего они нужны в нашем повествовании. Каждая сцена должна:
• каким-то образом быть следствием «решения», принятого в предыдущей сцене;
• двигать историю вперед посредством реакции персонажей на происходящее;
• делать следующую сцену неизбежной;
• что-то нам сообщать о характерах персонажей, облегчая понимание мотивов, которые кроются за их действиями.
Это значит, что вы должны задать себе следующие вопросы, чтобы судить, является ли определенная сцена частью длинной цепи причин и следствий:
• Несет ли в себе сцена какую-то крайне важную информацию, без которой одна из последующих сцен не будет иметь смысла?
• Есть ли у нее понятная причина, которую видит читатель (даже если «настоящая причина» происходящего раскроется потом)?
• Она помогает понять, почему герои поступают так, а не иначе?
• Она вызывает у читателя ожидания особых неминуемых событий?
А теперь перейдем к математическому уравнению: оценивая значимость каждой сцены в истории, спросите себя: «Если я это вырежу, изменится ли что-нибудь в последующих сценах?» Перефразирую немного Джонни Кокрана: «Если ответ "нет", то действуйте». Эй, я не говорила, что будет просто, – никто не вкладывает в свою историю душу и сердце лишь затем, чтобы сделать пару лирических отступлений.